Therapeutics and Hypoglycaemia in the Elderly Patient with Diabetes

Dr Ester Yeoh
Dr Phua Eng Joo
A/Prof Lim Su Chi
Diabetes Centre, Khoo Teck Puat Hospital
Case Study 1 – Mr S

• 81 year old man
• Premorbid: ADL independent, community ambulant without aid
• Lives with daughter, main caregiver: domestic helper
• Medical hx
 – T2DM x 20 years, HbA1c 9.6%
 – Chronic kidney disease Stage 4, Creat 200, eGFR 26 ml/min
 – Hpt, Dyslipidaemia x 20 years
 – Alzheimer’s dementia – moderate, MMSE 18
 – Hypothyroidism
 – BPH
Medication List

- Thyroxine 100mcg OM
- Donepezil 5mg ON
- Escitalopram 10mg OM
- Terazosin 5mg ON
- Atorvastatin 40mg ON
- Vit B Complex 1/1 OM
- Losartan 100mg OM
- Nifedipine LA 30mg OM
- Linagliptin 5mg ON
- S/c Mixtard (30/70) 30 units OM, 20 units ON
Clinical Assessment

• No significant complaints
• Infrequent SMBG: 1x/week, usually ranging 7-16 mmol/l, occ 4.5 mmol/l
• BP 142/90 mmHg, no postural drop
• Injection sites: ok
• Feet: ok
Questions

• Is he having hypoglycaemia?
 – Risk factors for hypoglycaemia
 – Risks from hypoglycaemia
• Is his treatment for diabetes appropriate?
 – Risks a/w insulin therapy and type of insulin
• What is his HbA1c target?
What are the Risk Factors for Hypoglycaemia in this patient?

A Age

B Blood glucose lowering therapy – insulin/SU

C Chronic kidney disease and Cognitive impairment (+/- Psychological problems)

D Duration of DM
Does his suboptimal glycaemic control lessen his risk of hypoglycaemia?

HbA1c and Risk of Hypoglycaemia

- Intensive therapy is a/w increased risk of hypoglycaemia (DCCT study – 3 fold higher severe hypoglycemia in intensive group)
Glycaemic control and hypoglycaemia in T2DM

Intensive therapy contributes to an increased risk of hypoglycaemia by 2–3-fold, in advanced type 2 diabetes with cardiovascular disease.

ADVANCE, NEJM 2008; 358: 2560; ACCORD, NEJM 2008; 358: 2545; VADT, NEJM 2009; 360: 129; ORIGIN, NEJM 2012; 367;:319
This patient’s HbA1c is 9.6%...

• Does having a higher HBA1c protect against hypoglycaemia?

 NO!
HbA1c and Risk of Severe Hypoglycaemia in T2DM

- Self-reported hypoglycaemia was common (10.7% of cohort); insulin-treated patients (19%)
- Severe hypoglycaemia was common across all levels of glycaemic control
- Risk was higher in those with near-normal HbA1c or very poor glycaemic control
- Even after adjusting for age, duration of DM, type of treatment, the relationship of SH with HbA1c was still significant

Lipska, Diab Care 2014; 36:3535
Prevalence of severe hypoglycaemia in insulin-treated diabetes

Error bars = 95% confidence intervals

UK Hypoglycaemia Study Group, Diabetologia 2007; 50:1140-7
Is he having hypos?

Proof of Hypoglycaemia – SMBG (frequent) vs CGM

Sensor Data (mmol/L)

<table>
<thead>
<tr>
<th>Thu 31/05</th>
<th>Fri 01/06</th>
<th>Sat 02/06</th>
<th>Sun 03/06</th>
<th>Mon 04/06</th>
<th>Average</th>
</tr>
</thead>
</table>

Graph showing sensor data over a period with different colors for each day.
• Wide glucose fluctuations (highest BG 22.2 mM, lowest BG 2.3 mM)
• Average BG 11.6 mmol/l
What are the Risks from Hypoglycaemia?

Brain
Coma, seizures, cognitive impairment

Cardiovascular
Myocardial ischaemia, arrhythmias

Musculoskeletal
Falls, accidents, fractures, dislocations, driving accidents
Morbidity of Hypoglycaemia is affected by Age

Cardiovascular events

Coma, seizures

Falls, accidents, fractures
Diabetes and **Insulin Therapy** in Elderly are a/w Increased Risk of Hip Fractures

Incidence rate of hip fracture per 1000 person-years by diabetes status

![Graph showing incidence rate of hip fracture](chart.png)

Lipscombe et al, Diab Care 2007; 30: 835
Hypoglycaemia is a/w falls and fall-related fractures in people aged >65
Problems of treating diabetes in elderly people with insulin

- Social isolation – many live alone
- Dependency on nursing/social services is common
- Meals may be variable and inadequate
- May have practical difficulty (manual dexterity, vision) with self-administration of insulin, insulin therapy will necessitate BG testing
- Physical frailty, problems with vision and cognitive function (often progressive)
- Knowledge of symptoms and treatment of hypoglycaemia is limited
Which Insulin Therapy to choose in the Elderly? (1)

- Limited studies on the older elderly >75 years or with limited functional status (often excluded from trials)

- Type of insulin therapy
 - **Insulin analogues** seem to be safer, more physiologic pharmacologic profile, increased convenience and reduced risk of hypoglycaemia
 - **Basal insulin analogues** for convenience, may be able to achieve improved glycaemic control
 - Premixed insulins – added convenience, improved glycaemic control, but fixed regimes necessitate rigid oral intake

![Pharmacokinetic Profiles of Human Insulin and Insulin Analogues](image-url)
Which Insulin Therapy to choose in the Elderly? (2)

• Mode of administration
 – **Insulin pen devices** facilitate insulin dosing and patient independence

• Timing of administration
 • For basal insulin, **morning basal insulin** (instead of bedtime) may reduce risk of nocturnal hypoglycaemia
What should the glycaemic target be?

Patient characteristics that limit strict glycaemic control and influences choice of treatment

- Age
- Duration of diabetes
- Limited life expectancy
- Vulnerability to hypoglycaemia, impaired awareness of hypoglycaemia
- Advanced diabetic complications, especially renal function (impairment)
- Presence of co-morbidities and frailty
- Psychological and cognitive status
- (Unwilling to do BGM)

INDIVIDUALISED CARE
Cross-sectional analysis of 1288 older adults (≥65 years) with DM from NHANES 2001-2010

Health status categories: very complex/poor (difficulty ≥2 ADL or dialysis), intermediate/complex (difficulty with ≥iADL or ≥3 chronic conditions) or healthy

Examined tight glycaemic control (HbA1c <7%) and use of meds with high hypo risk (Insulin/SU)

Lipska et al, JAMA Int Med 2015; 175: 356
56% of those with very complex health and 63% with intermediate health had HbA1c <7%.

50-60% of those with HbA1c <7% were on insulin/ SU across all health categories.

Many older adults are overtreated with no change in HbA1c or prescription in 10 years of follow up.

Lipska et al, JAMA Int Med 2015; 175: 356
Glycaemic targets in frail elderly people (ADA and American Geriatrics Society)

• HbA1c 7- 7.5%
 – Very few co-morbidities
 – Preserved cognitive and physical function

• HbA1c 7.6-8.5%
 – Multiple chronic illnesses
 – Mild cognitive impairment
 – Risk of falls and hypoglycaemia

• HbA1c < 9.0%
 – End-stage chronic illnesses
 – Moderate to severe cognitive impairment
 – In long-term care

Kirkman et al, Diab Care 2012; 35: 2650; McLaren et al, BMJ 2013; 346:f2625
Summary & Recommendations for Case Study 1

• Elderly patient with CKD, dementia and depression, on Premix insulins, suboptimal HbA1c 9.6% but with hypoglycaemia

• Recommendations
 – Target HbA1c <9.0%
 – Pharmacotherapy – limited by above factors
 • DPP4 inhibitor, other oral agents with low risk of hypo
 • Insulin therapy:
 – Premix insulins – necessitate rigid oral intake
 – Basal insulin – Levemir/ Glargine
CASE STUDY 2

70-year-old man

Medical History

- Type 2 diabetes x 4 years
- Hypertension
- Dyslipidaemia
- Coronary artery disease
- Chronic obstructive airways disease
- Ex-smoker

Medication List

<table>
<thead>
<tr>
<th>Independent</th>
<th>Metformin 1g TDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stays with wife</td>
<td>Enalapril 10 mg BD</td>
</tr>
<tr>
<td></td>
<td>Amlodipine 10 mg OM</td>
</tr>
<tr>
<td></td>
<td>Simvastatin 40 mg ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspirin 100 mg OM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glibenclamide 10 mg BD</td>
</tr>
<tr>
<td>HbA1c 8.7%</td>
</tr>
<tr>
<td>Creatinine 144 μmol/L</td>
</tr>
<tr>
<td>eGFR 45 mL/min/BSA</td>
</tr>
</tbody>
</table>

Functional Status

- Independent
- Stays with wife
CASE STUDY 2

Found drowsy at bedtime. BGM “Lo” – reversed with dextrose. Recently unwell with fever and upper respiratory tract symptoms.

Hospitalization

QUESTION 1

Which of the following can contribute to his hypoglycaemia?

- A. Metformin
- B. Glibenclamide
- C. Renal failure
- D. Intercurrent illness

Maybe something else?
Drug-Drug Interactions

- Examples: clarithromycin, levofloxacin, co-trimoxazole, fluconazole
- Using cephalexin as a reference, a cross-sectional study showed elevated risk for hypoglycaemia for antibiotic use

<table>
<thead>
<tr>
<th>Drug</th>
<th>OR (Glipizide)</th>
<th>OR (Glyburide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotrimoxazole</td>
<td>3.14 (1.83-5.37)</td>
<td>2.68 (1.59-4.52)</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>2.90 (1.69-4.98)</td>
<td>5.02 (3.35-7.54)</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>2.09 (1.35-3.25)</td>
<td>2.83 (1.73-4.62)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>2.53 (1.23-5.23)</td>
<td>2.20 (1.04-4.68)</td>
</tr>
</tbody>
</table>

Schelleman et al. Clin Pharmacol Ther 2010
CASE STUDY 2

Current Presentation

Well. No further hypoglycaemia.
SMBG: Pre-breakfast 8.2 – 11.4 Pre-dinner 9.0 – 14.7

QUESTION 2

Which of the following would you add to metformin?

A. Sulphonylurea
B. Meglitinide
C. Alpha-glucosidase inhibitor
D. Dipeptidyl peptidase-4 (DPP-4) inhibitor
E. Thiazolidinedione
F. Sodium-glucose cotransporter 2 (SLGT2) inhibitor
G. Glucagon-like peptide-1 (GLP-1) receptor agonist
H. Insulin
Metformin

Glycaemic Effects

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Hypoglycaemic risk: Rare

Special Considerations

- First-line therapy
- Benefits include reduction of MACEs, improved survival
- Modest weight loss (or neutrality)
- Adverse effects: gastrointestinal intolerance, rarely lactic acidosis
- Always check renal function before and during use
- **Avoid** when eGFR is less than 30 mL/min/BSA
Sulphonylureas

Glycaemic Effects

- Efficacy: High
- Hypoglycaemic risk: Moderate
- Cost: Low

Special Considerations

- Avoid long-acting sulphonylureas: **glibenclamide**, (chlorpropamide)
- Significant secondary failure rate
- Weight gain
- Impairment of ischaemic preconditioning
- Be aware of situations predisposing to hypoglycaemia
Alpha-Glucosidase Inhibitors

<table>
<thead>
<tr>
<th>Glycaemic Effects</th>
<th>Efficacy</th>
<th>Hypoglycaemic risk</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>Rare</td>
<td>High</td>
</tr>
</tbody>
</table>

Special Considerations

- Acarbose has minimal systemic absorption
- Weight neutral
- Frequent dosing at meals
- Concern for **gastrointestinal intolerance**
Dipeptidyl Peptidase-4 Inhibitors

<table>
<thead>
<tr>
<th>Glycaemic Effects</th>
<th>Efficacy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

| Hypoglycaemic risk | Rare |

Special Considerations

- Well-tolerated, once daily dosing regimen
- Weight neutral
- Probably safe from cardiovascular standpoint though saxagliptin was associated with an increase in hospitalization for heart failure
- **Dose reduction** required in renal insufficiency (except for linagliptin)
- Longer term data still required
Sodium-Glucose Cotransporter 2 Inhibitors

<table>
<thead>
<tr>
<th>Glycaemic Effects</th>
<th>Efficacy</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td></td>
</tr>
</tbody>
</table>

Special Considerations

- Novel mechanism of action
- Well-tolerated, once daily dosing regimen
- Benefits include weight loss, blood pressure reduction
- More data required on use in older adults
- Concern for **genitourinary infections**, polyuria, **euglycaemic diabetic ketoacidosis** and possible fractures in elderly
<table>
<thead>
<tr>
<th></th>
<th>Glycaemic Effects</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>Hypoglycaemia</td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Sulphonylureas</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>DPP-4 Inhibitors</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>SGLT2 Inhibitors</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Meglitinides</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>GLP-1 Agonists</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>TZDs</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
CASE STUDY 2

Well. No further hypoglycaemia.
SMBG: Pre-breakfast 8.2 – 11.4 Pre-dinner 9.0 – 14.7

QUESTION 2

Current Presentation

Which of the following would you add to metformin?

A. Sulphonylurea
B. Meglitinide
C. Alpha-glucosidase inhibitor
D. Dipeptidyl peptidase-4 (DPP-4) inhibitor
E. Thiazolidinedione
F. Sodium-glucose cotransporter 2 (SLGT2) inhibitor
G. Glucagon-like peptide-1 (GLP-1) receptor agonist
H. Insulin
Medical History

- Type 2 diabetes x 20 years
 - Hypertension
 - Dyslipidaemia
 - Lumbar spinal stenosis
 - Osteoporosis with hip fracture
 - Parkinson disease
- Coronary artery disease
 - Heart Failure
 - Chronic kidney disease
 - Knee osteoarthritis
 - Stroke with vascular dementia
 - Postural hypotension

Medication List

- **Aspirin 100 mg OD**
- **Amlodipine 10 mg OD**
- **Paracetamol 1g QDS**
- **Frusemide 40 mg BD**
- **Alendronate**
- **Lactulose**
- **Metformin 1g TDS**
- **Captopril 12.5 mg TDS**
- **Tramadol 50 mg TDS**
- **Propranolol 20 mg BD**
- **Calcium/Vitamin D Senna**
- **Glicazide 160 mg BD**
- **Clopidogrel 75 mg OD**
- **Madopar 62.5 mg QDS**
- **Mirtazapine 15 mg ON**
- **Sangobion**
- **Dulcolax**
CASE STUDY 3

Medical History

- Type 2 diabetes x 20 years
- Hypertension
- Dyslipidaemia
- Lumbar spinal stenosis
- Osteoporosis with hip fracture
- Parkinson disease
- Coronary artery disease
- Heart Failure
- Chronic kidney disease
- Knee osteoarthritis
- Stroke with vascular dementia
- Postural hypotension

Functional Status

- Frail, wheelchair bound
- Fussy with food

Results

- HbA1c 7.2%
- Creatinine 201 μmol/L
- eGFR 22 mL/min/BSA

What is your approach?
Polypharmacy

- Synergism, comorbidities, complications, cascade prescribing, lack of awareness/coordination
- Low adherence
- Escalating cost
- Drug-drug & drug-disease interactions
- Adverse drug reactions
- Geriatric syndromes
“Each capsule contains your medication, plus a treatment for each of its side effects.”
Tailor treatment goals for diabetes

Preventing disease complications vs. avoiding harm

(a) Assess hypoglycaemic risk

(b) Simplify treatment regimens & minimize polypharmacy

(c) Start slow and go slow

(d) Be aware of geriatric syndromes (which can change with time)

(e) Educate family and caregivers
CASE STUDY 3

85-year-old woman

Medication List

<table>
<thead>
<tr>
<th>Aspirin 100 mg OD</th>
<th>Metformin 1g TDS</th>
<th>Glicazide 160 mg BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amlodipine 10 mg OD</td>
<td>Captopril 12.5 mg TDS</td>
<td>Clopidogrel 75 mg OD</td>
</tr>
<tr>
<td>Paracetamol 1g QDS</td>
<td>Tramadol 50 mg TDS</td>
<td>Madopar 62.5 mg QDS</td>
</tr>
<tr>
<td>Frusemide 40 mg BD</td>
<td>Propranolol 20 mg BD</td>
<td>Mirtazapine 15 mg ON</td>
</tr>
<tr>
<td>Alendronate</td>
<td>Calcium/Vitamin D</td>
<td>Sangobion</td>
</tr>
<tr>
<td>Lactulose</td>
<td>Senna</td>
<td>Dulcolax</td>
</tr>
</tbody>
</table>

- Stop metformin and glicazide
- Review antihypertensives (once daily dosing)
- Revise analgesic agents
- Consider stopping non-essential medications (supplements)
- Consider drug holiday for alendronate
Comprehensive Geriatric Approach

Valencia WM, Florez H. Diabetes Obes Metab 2014
Take Home Messages

• T2DM is common in elderly population, often associated with frailty and multiple co-morbidities, progression of these comorbidities and cognitive impairment.

• Hypoglycaemia is more common than realised, regardless of HbA1c and may cause serious morbidity.

• Insulin therapy and SU therapy have high risk of hypoglycaemia.
 – For insulin therapy: consider type of insulin therapy, mode of administration and timing of therapy for convenience, more physiological profile and lower risk of hypoglycaemia.

• Strict glycaemic control may be inappropriate, targets should be individualised and may be less stringent than in younger people.
 – Changing HbA1c target (to less stringent) and simplification and changing medication regime is needed as the patient progresses on in life.